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A stability analysis of an oscillating body located in fluid flow
using automatic differentiation
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SUMMARY

This paper presents a stability analysis of an oscillating body subjected to fluid forces located in a transient
incompressible viscous flow. If the body is supported by elastic springs, oscillation will begin. If the
characteristic period of the body and the excited oscillating period due to fluid forces match each other,
resonance can occur. Stability analysis is therefore needed to determine the nonlinear behavior of the
body. This paper presents an analysis of the changing stability of bodies by the numerical computation.
To implement the computation, the motion of fluid around a body is expressed by the Navier–Stokes
equation described in the arbitrary Lagrangian–Eulerian form. The fluid influence on the body is discretized
by the finite element method based on a mixed interpolation by the bubble function in space. The motion
of the body is assumed to be expressed by the equations of motion.

To evaluate stability, stability function is defined by the total energy of the oscillating body. The stability
is judged according to a stability index, obtained by the use of the automatic differentiation (AD) of the
stability function. AD is a derivative computation method that gives high accuracy. By the use of AD, the
second-order derivative matrix, which is needed to compute the stability index, can be obtained exactly.

For the numerical studies, analyses of one degree of freedom and two degrees of freedom (2DOF) for
a circular cylinder and 2DOF for a rectangular cylinder are carried out. A combination of a cylinder and
supporting elastic spring can produce stable, neutral and unstable states. It is shown that the stability of
the cylinder can be determined by the stability index. This paper shows new possibilities for stability
analysis of bodies located in a fluid flow. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The purpose of this paper is to present a stability analysis of an oscillating body supported by
elastic springs located in a 2D transient viscous fluid flow by means of automatic differentiation
(AD). Stability analysis is not merely a theoretical approach to fluid mechanics: it also provides
important real-world applications over a wide range of engineering fields with numerous practical
examples, including the collapse of the Tacoma Narrows Bridge, unusual vibrations of blades in
turbines and unforeseen breakdowns of fluid gauges. A rigid body supported by elastic springs
and located in a flow oscillates as a result of the fluid force. In this paper, a numerical analysis
of the stability of an oscillating body located in a fluid flow is described using an energy method
based on the finite element method.

Conventional stability analysis is conducted using eigenvalues and eigenvectors. Previous studies
are reviewed in [1–3]. The minimum value of eigenvalue is obtained and stability is judged
according to its positive or negative sign. Computing eigenvalues is extremely laborious. Stability
can also be analyzed using other methods. One is the method based on the energy derivative,
which is called the energy approach. There are no previous papers presented dealing with this
approach based on the finite element method. In this paper, a stability analysis based on the energy
derivative using the AD is presented.

To express the movement of a rigid body, the arbitrary Lagrangian–Eulerian (ALE) finite element
method is used in the analysis. For the temporal discretization of the velocity of the momentum
equation, the Crank–Nicolson method is applied to obtain the implicit scheme and the pressure
equation explicit method is employed. The stabilized bubble function finite element method is used
to stabilize the computation. Mesh control is one of the most important and difficult challenges
in the ALE method. Traditional mesh control methods are unsuitable because of mesh distortion
by large displacements. In this study, assuming small mesh deformation, the shear slip mesh
update method (SSMUM) is adopted for the rotational movement. For the mesh control method
of vertical movement, the flexible re-mesh update method (FRUM) developed using a transform
of SSMUM is used. Those are the improvements of the procedures presented by Tezduyar and his
group [4]. Employing these two mesh control methods allows the mesh to be re-meshed without
mesh distortion.

The stability of the behavior of the body is evaluated according to the total energy computed by
the displacement from the base level, velocity and power to act on the body. To do this, the stability
index is introduced, which is the second-order differentiation of the energy for the judgment of
body stability. It is difficult to obtain the second-order partial derivative of the total energy of an
oscillating body since the total energy, which is a function of displacement, velocity and internal
force and which should be differentiated with respect to coordinates, is a function of time. This
is termed the variation of function. Derivation of the second-order variation is a particularly hard
task to formulate and to program. Therefore, in this study, the AD, which enables numerical
differentiation, is applied to solve this difficulty. Stability of the oscillating body can be evaluated
using the determinant of the second-order partial derivative, which is referred to as the stability
index.

Several numerical studies are presented in this paper. First, a circular cylinder that has one
degree of freedom (1DOF) in the vertical direction is analyzed. A stable pattern of periodic body
oscillation behavior is assumed. The body oscillates periodically, assuming a high heavy mass and
a strong spring support. The body is stable over all time durations. The next study is a pattern
comprising weakly elastically supported body oscillation. The body is supported by a weak elastic
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spring and is thus easily moved. The stability index shows close to stable state during semi-periodic
oscillation. However, it is revealed that at some points, stability is changed by the stability index.
At these points, the forces applied to the body are equilibrated at an instant. This state should
correspond to a neutral pattern. The third is a pattern of non-convergence of body oscillation. The
body has a very low mass and is supported by a medium-range elastic spring. As the amplitude
of oscillation becomes greater and greater, the stability state changes from stable to unstable.
An incremental oscillation of the body occurs with the amplitude ultimately increasing toward
infinity. Circular and rectangular cylinders that have two degrees of freedom (2DOF) in the vertical
and rotational directions are analyzed. Because of the 2DOF, the body oscillation becomes more
complex. The stability of the body with respect to irregular oscillation is analyzed using the ALE
method and judged by the stability index obtained by the second-order automatic differentiation
(SOAD).

2. GOVERNING EQUATION DESCRIBED BY ALE

2.1. Navier–Stokes equation

Consider a 2D circular cylinder located in an unsteady transient flow, assumed to be an elas-
tically supported rigid body. The motion of incompressible viscous flow is described by the
non-dimensional Navier–Stokes equation based on the ALE description [5–9]. Let � denote the
boundary of � as shown in Figure 1 and assume that an incompressible viscous flow occupies �.
The state equation of the flow can be expressed using the following Navier–Stokes equation in the
non-dimensional form:

�u
�t

+b·∇u+∇p−�∇ ·(∇u+(∇u)T)= f in � (1)

∇·u=0 in � (2)

where u, p and � are, respectively, velocity, pressure and viscosity in which � is the inverse of the
Reynolds number. The ALE advection term in the ALE coordinate system is denoted by b and is
expressed as

b=u−u (3)
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Figure 1. Analysis domain.
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where u is the reference velocity. Because an arbitrary nodal coordinate can be selected in the
ALE method, u is expressed by the time derivative of coordinate v as

u= �v
�t

(4)

where v is the reference coordinate.
A solid body B with the boundary �B is laid in an external flow; the initial conditions for

velocity and pressure are

u= û0 at t=0 (5)

p= p̂0 at t=0 (6)

where û is the constant inflow velocity. The boundary condition is given as follows:

u=(û,0) on �1 (7)

u2=0, t1=0 on �2 (8)

t= t̂=0 on �3 (9)

u=uB on �B (10)

t={−pI+�(∇u+∇u)}·n (11)

where t is traction and n is unit vector of outward normal to �, respectively, and uB means velocity
on boundary �B .

The fluid forces acting on the body are denoted by F, where the three components are drag, lift
and momentum forces, respectively. The drag and lift forces in F are denoted by Fxy obtained by
integrating the traction t over the boundary �B :

Fxy =−
∫

�B

td� (12)

2.2. Body oscillation

The body supported by elastic springs shown in Figure 2 in the flow is regarded as a rigid body, is
assumed to have three independent DOF and can be described by an equation of body motion. The
body has its own acceleration {Ẍ , Ÿ ,�̈} and velocity {Ẋ , Ẏ ,�̇}, where X and Y are displacement
movements and � is the rotation angle, respectively. The equations of motion are as follows:

mẌ+cẊ+kX=Fxy (13)

I �̈+c��̇+k��=M (14)

where X={X,Y }T is the displacement, Fxy ={Fx ,Fy}T is the external force, m is the mass, c and
c� are structural dampings, k and k� are spring constants, I is the moment of inertia and M is the
moment force applied to the body. The compatibility relationship between rigid body and fluid
flow is as follows:

u̇� = TTẌ=TTu̇

u� = TTẊ=TTu
(15)
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Figure 2. Body support.
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where superscripted � means a quantity with respect to the rigid body. The equilibrium condition
is expressed as

F+Tf� =0 (16)

where F={Fxy,M}T is the fluid force acting on the body and matrix T expresses the geometric
relationship between the center of gravity on the body and each node of the material surface.
Figure 3 shows the geometric relation of each node of a circular cylinder, where obj is the number
of nodes on the boundary of the circular cylinder. Transformation matrix T is

T=

⎡
⎢⎢⎣

1 0 1 0 1 0

0 1 · · · 0 1 · · · 0 1

−Ly1 Lx1 −Lyi Lxi −Lyobj Lxobj

⎤
⎥⎥⎦
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where {
Lxi

L yi

}
=
[
cos�s −sin�s

sin�s cos�s

]{
xi

yi

}

where �s is the angle of position. Thus, Fxy and M are influenced by the fluid around a body and
are expressed as

Fxy =
{

obj∑
i=1

fxi ,
obj∑
i=1

fyi

}T

(17)

M=
obj∑
i=1

(yi · fxi −xi · fyi ) (18)

where xi and yi are the position coordinates.

3. DISCRETIZATION

The Navier–Stokes equations are discretized by mixed interpolation using the finite element method.
Pressure is discretized by the linear interpolation function, whereas velocity is interpolated by
the bubble function. The stabilized bubble function, originated by Matsumoto et al. [10, 11], is
adopted to stabilize the computation. The finite element equation is expressed as

Mu̇+(S+D)u−Ap= f (19)

ATu=0 (20)

whereM is the mass, D is the diffusion, S is the advection including material arbitrary velocity b, p
is the pressure and AT is the transpose of matrix A. The external force f is given by Equation (16).
The Crank–Nicolson method is applied to the discretization in time for velocity in the momentum
equation. For the pressure of momentum equation, an explicit scheme is applied to the temporal
discretization:

M
un+1−un

�t
+(S+D)un+1/2−Apn+1= fn (21)

ATun+1=0 (22)

where

un+1/2= 1
2 (u

n+1+un) (23)

From these discretizations, two equation systems should be solved at the same time. The compu-
tation can be carried out without giving the pressure boundary condition. Moreover, to conduct
large-scale computations, the bi-conjugate gradient method with an element-by-element calculation
is adopted.
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4. MESH CONTROL

4.1. The SSMUM

The SSMUM [12, 13], designed to handle certain classes of flow problems with moving boundaries,
is applied to the ALE method. This method is adaptable to such problems as regular and large
boundary displacement of rotation. If a thin layer of extremely distorted elements is accommodated,
limited re-meshing needs to be carried out. SSMUM is able to effectively adjust the significantly
distorted mesh problem by a large amount of body movement, avoiding cumbersome procedures
using re-meshing processes such as the Laplace equation method [8, 9].

The SSMUM is a mesh re-construction method that combines a region of rigid non-variant
element and a layer region of shear-absorbing variable elements. Consider the rotation of the body
in Figure 4. The rotating body is embedded in a disk of rigid elements which rotates jointly with
the body. These variant regions are immersed in another set of non-variant elements spanning
the exterior boundaries, as shown in Figure 5. The thickness of this layer can span one or more
elements. Non-variant areas around a rotating body move with the motion of the body. Gradually,
a variable area mesh is distorted, followed by rotation. Finally, the mesh in the available area is
reconstructed between non-moving areas.

4.2. The FRUM

The FRUM, which is a modification of SSMUM applied to straight movement in a limited space,
is carried out for vertical transformation. In this method, mesh distortion is minimized in space that

Body

Bod
y

Figure 4. Shear slip model.
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Figure 5. Re-mesh model.

Figure 6. Flexible re-mesh model.

limits one-directional movement to some degree. In this way, re-mesh cost and node movement
can be minimized.

The large transformation moving boundary problem can be analyzed using this method, but
for only one direction of movement. Application of two different directions in this method and
SSMUM to the three degrees of freedom (3DOF) moving boundary problem can be solved in 2D
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Figure 7. Re-mesh model.

motion. Figure 6 shows the outline of the fixed mesh, moving mesh and flexible re-mesh update
(FRU) layers. The fixed mesh has some space for movement of the moving mesh. If the moving
mesh is close to the FRU layer node, the FRU layer is reconstructed as shown in Figure 7. In
this method, the reconnect criterion is important. The initial width of FRU mesh laid next to the
movable mesh is dy0. Let the width of the FRU mesh after movement lying next to the movable
mesh be dyn . Re-meshing is carried out if

dyn<CRJ dy
0 (24)

where CRJ is the reconnect criterion. If the moving mesh comes close to the movable nodes, it is
necessary to find CRJ so as to minimize mesh distortion between the moving mesh node and the
movable nodes. This problem assumes CRJ=0.5, which minimizes the pressed mesh distortion.

5. STABILITY ANALYSIS

A stability criterion depends on its definition. The stability is determined by evaluating the total
energy of the oscillating body. The focus of this paper is the total energy of the body located
in the incompressible viscous flow and supported by elastic springs that have 3DOF. If the body
begins to move, displacement, velocity and acceleration occur. As a result, kinematic energy Em
is generated, which is defined by

Em = 1
2mU 2

i + 1
2 I �̇

2
(25)

where m is the mass of the body, Ui ={U,V }, in which U and V are the velocities in the x and
y directions, I is the moment of inertia and �̇ is the angular velocity of the body’s rotation. As
the body moves, the elastic springs undergo axial and rotational deformations. As a result, spring
energy Es is generated, which is defined by

Es = 1
2 (kx X

2+kyY
2+k� �2) (26)
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where the spring constants in x , y and � directions are denoted by kx , ky and k�, respectively, and
X , Y and � are the body displacements in the x , y and � directions, respectively.
Owing to the external force applied to the body, potential energy is generated, which is defined by

Ep =−
(

�x
obj∑
i=1

fxi +�y
obj∑
i=1

fyi +��
obj∑
i=1

(yi0 · fxi −xi0 · fyi )
)

(27)

where obj is the total number of surface nodes, �x , �y and �� are the increments of each
displacement, fxi and fyi are the external forces in the X and Y directions and xi0 and yi0 are the
coordinates at the points of the external forces, respectively.

The total energy E is defined by summation of these energies:

E=Em+Es+Ep (28)

where E is referred to as the stability function. According to the energy theorem, if the energy is
positive-definite, then the body motion is stable. To differentiate the total energy by the coordinates
of the body node, stability can be evaluated. Second-order differentiation is needed to evaluate the
stability of the oscillating body. The evaluation can be performed by AD. Moreover, the determinant
of the second-order differentiation needs to be computed to evaluate the stability

e=
∣∣∣∣∣ �2E
�Xi�X j

∣∣∣∣∣ (29)

where e is the stability index, | | is the determinant and Xi is the coordinate on the surface of the
body:

Xi ={x1, x2, x3, . . . , xobj, y1, y2, y3, . . . , yobj} (30)

where obj is the total number of nodes on the body. The stability is evaluated by the stability index
e as follows:

e>0 stable (31)

e=0 neutral (32)

e<0 unstable (33)

6. AUTOMATIC DIFFERENTIATION

Derivatives of functions can be computed precisely not only manually but also by computers. The
differentiation rules are defined for each operation in computation. Thus, if a function is described
by its computer implementation, it can be differentiated exactly and automatically by overloading
operators. This technique is termed AD [14, 15].

It is important to pursue higher-quality computation for partial derivatives in the field of analysis
in numerical simulation. Derivatives are computed by using the well-known chain rule for composite
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functions in the normal way. In AD, a function and its derivatives are calculated simultaneously
using the same code and common temporary values. If the code for the stability of the function is
optimized, then the computation of the derivatives will also be optimized at the same time. There
are two types of AD: forward mode and reverse mode.

Forward-mode AD can compute partial derivatives automatically without computational graphs.
Therefore, less computational storage is required than with reverse-mode AD. Forward mode AD
is therefore used in this paper.

7. NUMERICAL ANALYSIS

7.1. Stability analysis of 1DOF circular cylinder

7.1.1. Stability analysis. The behavior of the circular cylinder’s vertical movement is analyzed
using the ALE finite element method combined with FRUM. Because of the lift force, the circular
cylinder is moved with respect to its center of gravity. It shows a reciprocating up-and-down
movement due to incompressible transient viscous flow. Stability analysis is carried out by SOAD.
This circular cylinder with 1DOF is analyzed using the different parameters that are listed in
Table I. The total energy is defined as follows:

E= 1
2mV 2+ 1

2kyY
2+Ep (34)

and the stability index is

e=
∣∣∣∣∣ �2E
�Xi�X j

∣∣∣∣∣ (35)

where

Xi ={y1, y2, y3, . . . , yobj} (36)

in which y1, y2, y3, . . . , yobj are the coordinates on the circular surface of the body.
The computational domain and the finite element mesh are shown in Figures 8 and 9, where

the mesh consists of 2720 nodes and 5266 elements, respectively. Boundary conditions are also
shown in Figure 8. The Reynolds number is 250. The computations in three cases are carried out
corresponding to stable, neutral and unstable states.

The magnitude of the stability index e is not relevant, whereas the information on the sign of
the index, positive or negative, is important in determining the stability. Thus, the stability index
is plotted in the figures as 0.1 if it is positive, as −0.1 if it is negative, and as 0 if the absolute
value of e is small enough, e<�, where � is 1.0×10−3.

Table I. Parameters used in computation in cases I, II and III.

Case Mass Spring Time

I 10.0 Heavy 20.0 Strong 60.0
II 1.0 Medium 1.0×10−3 Weak 60.0
III 0.4 Light 0.1 Medium 60.0
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Figure 8. Computational domain.

Figure 9. Finite element mesh.

7.1.2. The stable state. The parameters used are as follows: the mass of the circular cylinder is
10.0, the non-dimensional spring constant in the y-direction is 20.0 and the structural damping
coefficient is assumed to be 0.0. The time increment, �t , is 0.02. All values are non-dimensional.
The parameters are set with the mass of the circular cylinder being heavy and strong structural
springs. The computing time is 0.0–60.0 in non-dimensional time. The numerical results of the
stable 1DOF cylinder are illustrated in Figures 10–15.

Figure 10 represents the velocity distribution at non-dimensional time 10. Figure 11 shows the
velocity distribution at non-dimensional time 40. The time history of fluid forces around the body
is plotted in Figure 12. Figure 13 shows the time history of vertical displacement of the body.
Figure 14 is the time history of vertical velocity of the body. The time history of the stability index
compared with vertical displacement is shown in Figure 15.

The behavior of the body is classified as stable by the stability index, as shown in Figure 15.
During computational time, the stability index shows a stable state. The body oscillation is periodic
and its motion is under the control of the elastic spring and fluid flow, suggesting that the body
adopts a periodic and stable oscillation; therefore, this condition is referred to as the perfectly
stable state.
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Figure 10. Velocity at time 10 (1D stable circular cylinder).

Figure 11. Velocity at time 40 (1D stable circular cylinder).
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Figure 12. Fluid force versus time (1D stable circular cylinder).

Figure 13. Displacement y of the body versus time (1D stable circular cylinder).

7.1.3. The neutral state. The parameters used are as follows: the mass of the circular cylinder
is 1.0, the non-dimensional spring constant in the y-direction is 1.0×10−3 and the structural
damping coefficient is assumed to be 0.0, respectively. The time increment �t is 0.02. All values
are non-dimensional. The parameters set are that the mass of the circular cylinder is medium
and the structural spring is weak. The computing time is 0.0–60.0 in non-dimensional time. The
numerical results of the neutral 1DOF circular cylinder are shown in Figures 16–21.

Figure 16 represents velocity distribution at non-dimensional time 10. Figure 17 shows velocity
distribution at non-dimensional time 40. The time history of the fluid forces around the body is
plotted in Figure 18. Figure 19 is the time history of vertical displacement of the body. Figure 20
is the time history of the vertical velocity of the body. The time history of the stability index
compared with vertical displacement is shown in Figure 21.
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Figure 14. Velocity y of the body versus time (1D stable circular cylinder).

Figure 15. Stability index and y displacement of the body versus time (1D stable circular cylinder).

The behavior of the body is classified into two regions according to the stability index, as
shown in Figure 21. For the first point, the duration of the neutral region is shown in primary
terms by the stability index. The behavior of the stability index shows a constant pattern if the
body starts to oscillate. After the neutral region, the stability index shows stability except at some
points. Thus, the body begins to start semi-periodic oscillation, and this state is termed the semi-
stable oscillation region. Some notable points are included in the semi-stable oscillation region.
These are the maximum amplitude neutral points (MANPs). On the maximum amplitude point
of semi-periodic oscillation, the stability index shows neutral. MANPs represent the points at
which the body is prevented from oscillating because the forces are at equilibrium. This region,
where the stability index remains stable except for MANPs, is referred to as the neutral oscillating
state.
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Figure 16. Velocity at time 10 (1D of neutral circular cylinder).

Figure 17. Velocity at time 40 (1D of neutral circular cylinder).
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Figure 18. Fluid force versus time (1D of neutral circular cylinder).

Figure 19. Displacement y of the body versus time (1D of neutral circular cylinder).

7.1.4. Unstable state. The parameters used are as follows: the mass of the circular cylinder is 0.4,
the non-dimensional spring constant in the y-direction is 1.0×10−1 and the structural damping
coefficient is assumed to be 0.0. The time increment �t is 0.02. All values are non-dimensional.
The parameters set are that the mass of the circular cylinder is light and the structural spring has
medium strength. The computing time is 0.0–60.0 in non-dimensional time. The numerical results
of the unstable 1DOF circular cylinder are expressed in Figures 22–27. Figure 22 represents the
velocity distribution at non-dimensional time 10. Figure 23 shows velocity magnitude distribution
at non-dimensional time 40. The time history of fluid forces around the body is plotted in Figure 24.
Figure 25 shows the time history of vertical displacement of the body. Figure 26 is the time history
of the vertical velocity of the body. The time history of the stability index compared with vertical
displacement is shown in Figure 27.
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Figure 20. Velocity y of the body versus time (1D of neutral circular cylinder).

Figure 21. Stability index and y displacement of the body versus time (1D of neutral circular cylinder).

The behavior of the body is classified into two regions according to the stability index. The body
is supported by a middle-range elastic spring, so that the primary term in oscillation is shown to be
stable. However, the body can move easily because of its low mass. The body starts an incremental
vibration that is shown in the time history of displacement in Figure 25. Because of incremental
vibration, the body velocity dramatically and suddenly changes, as shown in Figure 26. Following
the amplification of the body oscillation, the stability transits to the transient stability region, in
which the phenomena change from stable to unstable. The body oscillation is gradually amplified
and finally exceeds the limit of its stability. The stable body then changes to unstable. Although
the body shows low oscillating amplitude immediately afterwards, the body velocity is turned in
the opposite direction. For this reason, the body stability immediately changes to unstable. The
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Figure 22. Velocity at time 10 (1DOF unstable circular cylinder).

Figure 23. Velocity at time 40 (1DOF unstable circular cylinder).

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 58:751–780
DOI: 10.1002/fld



770 M. FURUMI AND M. KAWAHARA

Figure 24. Fluid force versus time (1DOF unstable circular cylinder).

Figure 25. Displacement y of the body versus time (1DOF unstable circular cylinder).

body stability of oscillation therefore changes from stable to unstable. Finally, the body oscillation
is intensified by the amplification oscillation. In this region, the stability index shows the change
from stable to unstable condition; this is referred to as the unstable state.

7.2. Stability analysis of 2DOF circular cylinder

In this study, the behavior of the circular cylinder with 2DOF (rotation and vertical movement)
is analyzed by the ALE finite element method combined with SSMUM and FRUM. Because of
the lift and moment forces, both the body and its center of gravity move. The motions comprise
vibration up and down and rotation with respect to its center of gravity via incompressible transient
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Figure 26. Velocity y of the body versus time (1DOF unstable circular cylinder).

Figure 27. Stability index and y displacement of the body versus time (1DOF unstable circular cylinder).

viscous flow. Stability analysis is carried out by the SOAD presented in this paper. The circular
cylinder oscillates with 2DOF in this problem. The parameters used are as follows: the mass of the
circular cylinder is 1.0, the non-dimensional spring constant in the y-direction is 10.0 and in the
�-direction it is 1.0; the structural damping coefficient is assumed to be 0.0. The time increment
�t is 0.02. All values are non-dimensional. The computing time is 0.0–60.0 in non-dimensional
time.

The computational domain and the finite element mesh are shown in Figures 28 and 29, where
the mesh consists of 2720 nodes and 5266 elements, respectively. The computational conditions
are also shown in Figure 28. The Reynolds number is 250. The numerical results of the 2DOF
circular cylinder are expressed in Figures 30–35. Figure 30 represents the velocity distribution at
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Figure 28. Computational domain.

Figure 29. Finite element mesh.

non-dimensional time 10. Figure 31 shows velocity distribution at non-dimensional time 40. The
time history of fluid forces around the body is plotted in Figure 32. Figure 33 shows the time
history of vertical displacement and rotation. Figure 34 is the time history of vertical and rotation
velocities of the body. The time history of the stability index compared with vertical displacement
is shown in Figure 35. The behavior of the oscillating body based on 2DOF is more erratic than
that based on the 1DOF. Constant stability is shown owing to the strong vertical and rotational
elastic springs.

7.3. Stability analysis of 2DOF rectangular cylinder

The body is a rectangular prism. The parameters used are as follows: the mass of the quadrangular
prism is 10.0, the non-dimensional spring constant in the y-direction is 10.0 and in the �-direction
it is 0.1; the structural damping coefficient is assumed to be 0.0. The time increment �t is 0.02.
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Figure 30. Velocity at time 10 (2DOF stable circular cylinder).

Figure 31. Velocity at time 40 (2DOF stable circular cylinder).
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Figure 32. Fluid force versus time (2DOF stable circular cylinder).

Figure 33. Displacement y and rotation angle of the body versus time (2DOF stable circular cylinder).

All values are non-dimensional. The computing time is 0.0–60.0 in non-dimensional time. Thus,
the total energy is defined as follows:

E= 1
2mV 2+ 1

2kyY
2+ 1

2 I �̇
2+ 1

2K��
2+Ep (37)

and the stability index is

e=
∣∣∣∣∣ �2E
�Xi�X j

∣∣∣∣∣ (38)
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Figure 34. Velocity y of the body versus time (2DOF stable circular cylinder).

Figure 35. Stability index and y displacement of the body versus time (2DOF stable circular cylinder).

where

Xi ={x1, x2, x3, . . . , xobj, y1, y2, y3, . . . , yobj} (39)

in which x1, . . . , xobj, y1, y2, y3, . . . , yobj are the coordinates on the surface node of the body. The
computational domain and the finite element mesh are shown in Figures 36 and 37, where the
mesh consists of 2396 nodes and 4602 elements, respectively. Computational conditions are also
shown in Figure 36. The Reynolds number is 250.

The numerical results of the 2DOF rectangular cylinder are illustrated in Figures 38–43. Figure 38
represents velocity distribution at non-dimensional time 10. Figure 39 shows velocity distribution
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Figure 36. Computational domain.

Figure 37. Finite element mesh.

at non-dimensional time 40. The time history of fluid forces around the body is plotted in Figure 40.
Figure 41 shows the time history of vertical displacement and rotation. Figure 42 is the time history
of vertical and rotation velocities of the body. The time history of the stability index compared
with vertical displacement is shown in Figure 43.

The rectangular prism more easily oscillates in the rotational direction than the circular cylinder;
hence, the amplitude of oscillation is magnified. In spite of a large amount of rotational oscillation
and vertical displacement, the behavior of the body expressed by the stability index is stable.
This result suggests that rotational oscillation may not significantly influence stability, although it
depends on the body shape.
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Figure 38. Velocity at time 10 (2DOF stable rectangular cylinder).

Figure 39. Velocity at time 40 (2DOF stable rectangular cylinder).
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Figure 40. Fluid force versus time (2DOF stable rectangular cylinder).

Figure 41. Displacement y of the body versus time (2DOF stable rectangular cylinder).

8. CONCLUSION

The stability of an oscillating body subjected to fluid forces was analyzed using ALE-FEM as
a moving boundary problem and using SOAD for stability analysis. It is mentioned that accu-
rate differentiation value by AD is reflected in the body stability of the behavior. These results
can be understood as including that the behavior of the stability index can predict the behavior
of the body. In the stability analysis of the 1DOF circular cylinder, three stability patterns of
the oscillating body, i.e. a perfectly stable, neutral oscillating and unstable states, are exhibited.
In the stability analysis of the 2DOF circular and rectangular cylinders, the stability of more
complex oscillation phenomena can be predicted by the stability index. From these results, it is
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Figure 42. Velocity y of the body versus time (2DOF stable rectangular cylinder).

Figure 43. Stability index and y displacement of the body versus time (2DOF stable rectangular cylinder).

seen that the body’s stability can be analyzed using the present method, provided AD can be
used.
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